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1 Introduction

Poisson processes as a source of uncertainty are a standard tool for modeling rare and

randomly occurring events. These processes can be found, among others, in quality-ladder

models of growth (e.g., Grossman and Helpman, 1991, Aghion and Howitt, 1992, 1998), in the

endogenous fluctuations and growth literature with uncertainty (e.g., Wälde, 2005, Steger,

2005), in the labor market matching literature (e.g., Moen, 1997), in monetary economics

(e.g., Kiyotaki and Wright, 1991), and in finance (e.g., Merton, 1971). In most cases Poisson

processes affect the concerned variables through a stochastic differential equation (SDE ).

The two “major tools” required when working with SDEs are the change-of-variables formula

(CVF ), as a “rule” for computing the differential of functions of stochastic processes, and,

in so far as optimal control is concerned, the Hamilton-Jacobi-Bellman (HJB) equation.1

CVFs for SDEs driven by Poisson processes are provided by many textbooks in eco-

nomics. They might, however, be inappropriate for the use in economic modeling. As will

be discussed in detail at the end of Subsection 2.1, they either apply to one-dimensional pro-

cesses with only one source for jump uncertainty or they do not provide the exact stochastic

differential after a mapping. Sennewald (2006) presents therefore a CVF that can be applied

on mappings of multidimensional SDEs with many Poisson processes and that leads to the

exact differential.

Despite the widespread use, applying the HJB equation as a necessary or sufficient cri-

terion for optimality has required so far a set of restrictive or simplifying assumptions. In

particular, the boundedness of the instantaneous utility (or cost) function and of the co-

efficients in the constraint, which is given as a SDE, has been in most cases indispensable

for the use of the HJB equation as a necessary criterion, see, e.g., Gihman and Skorohod

(1972) or Dempster (1991). Other authors as, e.g., Kushner (1967) require, instead of this

boundedness condition, the value function to be contained in the domain of the infinitesi-

mal generator of the controlled process.2 However, both conditions are not convenient for

economic modeling since, on the one hand, in most cases neither utility and cost functions

nor the constraint’s coefficients are bounded and, on the other, to check whether the value

1Some readers may know the CVF better under the term Ito’s lemma and the HJB equation under the

name Bellman equation, which are the corresponding notations for frameworks with Brownian motion.
2The domain of the infinitesimal generator of a processX (t) consists of all once continuously differentiable

function V for that the limit limh&0 [EtV (X (t+ h))− V (X (t))] /t exist.
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function belongs to the mentioned domain requires in general a lot of calculation. To solve

this problem, Sennewald (2006) shows that the HJB equation can still be used as a neces-

sary criterion for optimality if, instead of boundedness, only linear boundedness is assumed.3

Apart from a terminal condition, no boundedness condition is required at all for deriving

the sufficiency of the HJB equation.

The present paper accompanies the rigorous proofs in Sennewald (2006) and is directed

at the applied model builder. It presents examples for the application of CVF and the HJB

equation. These examples should allow to work with Poisson uncertainty in other setups

as well. Both papers have the intention to encourage a more widespread use of Poisson

processes under more general assumptions concerning the economic environment.

After presenting versions of CVF in the subsequent section, we provide some applications

for it: A derivation of a household’s budget constraint and of a HJB equation for an optimum-

consumption problem. In Section 3 we present a typical maximization problem, consisting

in determining a household’s optimal consumption and investment behavior in the presence

of a deterministic flow of labor income. We use the HJB equation to derive both a Keynes-

Ramsey rule and a closed form solution. Based on that result, we provide through a mean

preserving spread a concise discussion on how uncertainty affects the expected consumption

growth and distinguish between the precautionary saving and reallocation mechanism. The

quantitative effect of either mechanism is stated explicitly. A simple method how to achieve

a mean preserving spread in a Poisson setting is presented as well.

The maximization problem in Section 3 extends a “standard” optimum consumption and

portfolio problem as considered by, e.g., Merton (1969, 1971) and Aase (1984) by allowing for

labor income in a Poisson framework. Merton (1971) derives a solution including wages when

uncertainty of the risky investment is modeled by Brownian motion. Aase (1984) extends

Merton’s model by introducing random jumps. But even though he gives hints on how to

proceed if wages as an additional source of income are taken into account, no solution for

this case is presented.

Keynes-Ramsey rules have been derived before, e.g., by Cass (1965) and Koopmans (1965)

in a deterministic growth model, by Turnovsky (2000) in a model of stochastic growth with

3Note that, if the value function is sufficiently smooth, the boundedness assumptions are sufficient for the

value function to be in the domain of the infinitesimal generator. Sennewald (2006) shows implicitly that

this property holds also for the more general case with linearly bounded utility and coefficients.
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Brownian motion, by Steger (2005) in an AK-type growth model with jumps, or by Wälde

(1999b) for an optimum-consumption problem similar to the one presented here. There are

two crucial differences compared to Wälde (1999b). First, Wälde focuses on risky R&D

which implies a return of minus one when R&D is not successful. We follow the “tradition”

of Merton and assume that the risky asset yields at least a certain deterministic return.

Second and crucial for results, we allow for two assets, a risky and a riskless one. The Keynes-

Ramsey rule for this setup impressively demonstrates the simplifying nature of allowing for

a second asset: While in one-asset cases the Keynes-Ramsey rule contains terms which are

hard to work with (the derivative of consumption with respect to wealth - the marginal

propensity to consume out of wealth - for Brownian motion or the post-jump consumption

level for Poisson uncertainty), this is not the case when there is a second asset. The post-

jump consumption level can here be expressed as a function of current consumption and

parameters. Consumption jumps are therefore known and the Keynes-Ramsey rule becomes

as straightforward to work with as deterministic Keynes-Ramsey rules.

This Keynes-Ramsey rule shows that increasing uncertainty always reduces average, i.e.

expected consumption growth. In a two-asset model of growth with Brownian motion as

noise, Obstfeld (1994) arrives at a similar result. In an AK model of growth with Poisson

uncertainty, Steger (2005) finds that the response of the average consumption growth on

higher risk is ambiguous and depends on the household’s risk aversion. We reconcile Steger’s

with Obstfeld’s findings: Steger’s one-asset case only induces a precautionary saving effect.

In our setup with two assets, the reallocation effect always dominates the precautionary

savings effect.

2 Change of Variables Formula (“Ito’s Lemma”)

This section first presents various versions of CVF, which is a “rule” for computing the

differential of functions of stochastic processes, and includes a discussion why other CVFs

presented by standard textbooks as, e.g., Malliaris and Brock (1982), might not be appro-

priate for the use in economic modeling. The second and third subsection provide typical

applications of the CVF by showing how the budget constraint of a household can be de-

rived via CVF. The fourth subsection shows how the HJB equation for a simple household’s

maximization problem is heuristically obtained, also by using CVF.
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2.1 A proposition and three corollaries

In the following we deal with one- or multidimensional stochastic processes x (t) that, starting

at time t0 in x (t0), obey SDEs of the form

dx (t) = α (t, x (t)) dt+
Pm

k=1 βk(t, x (t−))dqk (t) , x (t0) ∈ Rn, (1)

where α, β1, . . . , βm : [0,∞)× Rn → Rn are non-stochastic continuous vector functions and

q1, . . . , qm independent Poisson processes starting at t0 > 0.
4,5 The process x (t) is a so called

cádlág process. The expression cádlág is an acronym from the french “continu a droite,

limites a gauche”. That is, the paths of x (t) are continuous from the right with left limits.

The left limit is denoted by x (t−) ≡ lims↑t x (s). Thus, due to the continuity of the βk,

the left limit of βk(t, x (t)) is given by βk(t, x (t−)). At first glance, it might appear strange

that one uses the left limit βk(t, x (t−)) instead of βk(t, x (t)) as integrand in SDE (1). But

beyond analytical reasons, there is a simple intuitive explanation why this should be like

this. When a Poisson process qk (t) jumps, i.e., dqk (t) = 1, then x (t) jumps from x (t−) to

x (t), where the jump size is given by βk. It would not make much sense if the jump size

depended on the post-jump state x (t). It is rather convenient to assume that the jump size

is determined by the state just before the jump occurs – which is formally x (t−). Thus,

the jump size itself is then given by βk(t, x (t−)).

Our main statement on CVF, presented in the following proposition, is taken from Sen-

newald (2006, Theorem 1).

Proposition 1 (Multidimensional stochastic process) Consider the n-dimensional stochastic

process x (t) = (x1 (t) , ..., xn (t))
T following SDE (1). That is, each component obeys

dxi (t) = αi (t, x (t)) dt+
Pm

k=1 βik (t, x (t−)) dqk (t) , i = 1, . . . , n, (2)

where αi, βik : [0,∞)×Rn → R. For a once continuously differentiable function f : [0,∞)×

4The differentials have to be read componentwise, i.e., βk (t, x (t−)) dqk (t) =


β1k (t, x (t−)) dqk (t)

...

βnk (t, x (t−)) dqk (t)

 .

5A detailed analysis of SDEs with Poisson processes can be found in, e.g., Protter (1995) and Garcia and

Griego (1994).
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Rn → R, the differential of the process f (t, x (t)) is given by

df (t, x (t)) = [ft (t, x (t)) +
Pn

i=1 fxi (t, x (t))αi (t, x (t))] dt

+
Pm

k=1 [f (t, x (t−) + βk (t, x (t−)))− f (t, x (t−))] dqk (t) ,

where ft and fxi, i = 1, . . . , n, denote the partial derivatives of f with respect to t and xi, re-

spectively, and βk stands as in SDE (1) for the n-dimensional vector function (β1k, . . . , βnk)
T .

Intuitively speaking, the differential of a function is given by the “normal terms”, i.e.,

the partial derivatives with respect to its first argument t and with respect to x1, . . . , xn

times changes per unit of time (1 for the first argument and αi (t, x (t)) for each compo-

nent xi) times dt, and by a “jump term”. Whenever a process qk (t) jumps, each xi in-

creases by the βik (t, x (t−)), and the function jumps thus from f (t, x (t−)) to f (t, x (t)) =

f (t, x (t−) + βk (t, x (t−))).

The cádlág property of f (t, x (t)) holds trivially for all continuous functions f , and we

therefore do not mention it anymore in the following corollaries.

Corollary 1 (A deterministic and a stochastic differential with many independent Poisson

processes qk (t)) Consider two one-dimensional processes x (t) and y (t) given by the deter-

ministic differential dx (t) = αx (t, x (t) , y (t)) dt and SDE

dy (t) = αy (t, x (t) , y (t)) dt+
Pm

k=1 βk (t, x (t) , y (t−)) dqk (t) ,
6

respectively. Then, for a once continuously differentiable function f : [0,∞)× R2 → R, the

process f (t, x (t) , y (t)) follows

df (t, x (t) , y (t)) =

 ft (t, x (t) , y (t)) + fx (t, x (t) , y (t))αx (t, x (t) , y (t))

+fy (t, x (t) , y (t))αy (t, x (t) , y (t))

 dt
+
Pm

k=1 [f (t, x (t) , y (t−) + βk (t, x (t) , y (t−)))− f (t, x (t) , y (t−))] dqk (t) ,

where fx and fy stand for the partial derivatives of f with respect to x and y, respectively.

Again, the differential of f is given by the “normal terms” and by a “jump term”.

Whenever any of the processes qk (t) jumps, y (t) increases by βk (t, x (t) , y (t−)) and the

function jumps from f (t, x (t) , y (t−)) to f (t, x (t) , y (t−) + βk (t, x (t) , y (t−))). Obviously,

as dx (t) has no jump term, x (t) does not jump. The following corollary presents a two-

dimensional special case in which each component is driven by its “own” Poisson process.

6Observe that x (t) possesses continuous paths and thus x (t−) = x (t).
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Corollary 2 (Two stochastic processes) Consider the one-dimensional stochastic processes

x (t) and y (t) given by

dx (t) = αx (t, x (t) , y (t)) dt+ βx (t, x (t−) , y (t−)) dqx (t) ,

dy (t) = αy (t, x (t) , y (t)) dt+ βy (t, x (t−) , y (t−)) dqy (t) .

For a once continuously differentiable function f : [0,∞)×R2 → R, the process f (t, x (t) , y (t))

obeys

df (t, x (t) , y (t)) =

 ft (t, x (t) , y (t)) + fx (t, x (t) , y (t))αx (t, x (t) , y (t))

+fy (t, x (t) , y (t))αy (t, x (t) , y (t))

 dt
+ [f (t, x (t−) + βx (·) , y (t−))− f (t, x (t−) , y (t−))] dqx (t)

+
£
f
¡
t, x (t−) , y (t−) + βy (·)

¢− f (t, x (t−) , y (t−))
¤
dqy (t) ,

where we set βi (·) ≡ βi (t, x (t−) , y (t−)), i = x, y.

As before, the “normal terms” include the partial derivatives ft, fx, and fy. When-

ever, for example, Poisson process qx (t) jumps, the corresponding process x (t) increases by

βx (t, x (t−) , y (t−)) and the “jump term” makes the function jump from f (t, x (t−) , y (t−))

to f (t, x (t−) + βx (·) , y (t−)). When qy (t) jumps, only y (t) increases. Observe that, even

though qx (t) and qy (t) are independent, the differentials dx (t) and dy (t) and thus the pro-

cesses x (t) and y (t) are in general not since the change of each process depends through βi

on the other process.

In light of the preceding results one can see why CVFs from standard textbooks in

economics may not be suitable for the applied model builder. First of all, most authors, such

as Merton (1990), consider merely univariate processes with only one source of uncertainty,

which may be insufficient as our example in Subsection 2.3 will show. Furthermore there

are CVFs that yield only approximations of the differential df . Malliaris and Brock (1982,

Proposition 12.1 on p. 122) provide the expected difference E∆f only, but not the exact

observable df . Another example is given in Dixit and Pindyck (1994), going back probably

to a misprint. Readers should not be confused when comparing their CVF in Eq. (39) on p.

85 with our statements presented above. The exact expression in Dixit and Pindyck (1994),

adapted to our notation, should read as stated in the following corollary.
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Corollary 3 (A single Poisson process) Consider a one-dimensional stochastic process x (t)

described by dx (t) = α (t, x (t)) dt+ β (t, x (t−)) dq (t). Then, for a once continuously differ-

entiable function f : [0,∞)× R→ R, the differential of the process f (t, x (t)) reads

df (t, x (t)) = [ft (t, x (t)) + fx (t, x (t))α (t, x (t))] dt

+ [f (t, x (t−) + β (t, x (t−)))− f (t, x (t−))] dq (t) .

2.2 Application I: The budget constraint

Most maximization problems require a constraint. For a household, this is usually the

budget constraint. We show here how the structure of the budget constraint depends on the

economic environment the household finds itself in and how the CVF is used in this context.

Let wealth a (t) at time t be given by the number n (t) of stocks a household owns times

their price v (t). That is, a (t) = n (t) v (t). Let the price follow a process that is exogenous

to the household (but potentially endogenous in general equilibrium),

dv (t) = αv (t) dt+ βv (t−) dq (t) .

Hence, the price grows with the continuous rate α ∈ R and at discrete random times it

jumps by β percent. In order to avoid negative prices we assume β > −1. The random
times are modeled by the jump times of a Poisson process q (t) with arrival rate λ, which is

the probability that in the current “period” a price jump occurs. The expected (or average)

growth rate is then given by α+ λβ, cf. Appendix A.

Let the household earn dividend payments π (t) per unit of asset and labor income w (t).

Let consumption expenditure be given by p (t) c (t) , where c (t) denotes the consumption

quantity and p (t) the price of one unit of the consumption good. If buying stocks is the

only way of saving, the number of stocks held by the household changes in a deterministic

way according to

dn (t) =
n (t)π (t) + w (t)− p (t) c (t)

v (t)
dt.

When savings n (t)π (t) + w (t) − p (t) c (t) are positive, the number of stocks held by the

household increases by savings divided by the price of one stock. When savings are negative,

the number of stocks decreases.

The change of the household’s wealth, i.e., the household’s budget constraint, is then

obtained by applying CVF to a (t) = n (t) v (t). Using Corollary 1 with f (t, x, y) = xy, we
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obtain

da (t) =

·
v (t)

n (t)π (t) + w (t)− p (t) c (t)

v (t)
+ n (t)αv (t)

¸
dt

+ [n (t−) [v (t−) + βv (t−)]− n (t−) v (t−)] dq (t)

= [r (t) a (t) + w (t)− p (t) c (t)] dt+ βa (t−) dq (t) , (3)

where the interest-rate is defined as r (t) ≡ π (t) /v (t) + α. This is a very intuitive budget

constraint: As long as the asset price does not jump, i.e., dq (t) = 0, the household’s wealth

increases by current savings, r (t) a (t)+w (t)−p (t) c (t), where the interest rate r (t) consists
of dividend payments in units of the asset price plus the deterministic growth rate of the

asset price. If a price jump occurs, i.e., dq (t) = 1, wealth jumps by β percent, which is the

stochastic part of the overall interest-rate.

2.3 Application II: A two-sector economy

This subsection presents a derivation of a household’s budget constraint in a more complex

economic environment. We thereby obtain a two-dimensional example for Corollary 2. Con-

sider an economy consisting of two sectors employing technologiesX (t) = A (t)Kα
X (t)L

1−α
X (t)

and Y (t) = B (t)Kα
Y (t)L

1−α
Y (t) whereK (t) = KX (t)+KY (t) is the economy’s capital stock

at time t and L = LX (t) + LY (t) its constant labor force. The economy produces under

perfect competition. Total factor productivity (TFP) in both sectors is stochastic,

dA (t)

A (t−)
= ψAdt+ γAdqA (t) and

dB (t)

B (t−)
= ψBdt+ γBdqB (t) , (4)

where the parameters ψi and γi are constant and such that A (t) and B (t) are non-decreasing

in an expected sense, i.e., for any τ > t, EtA (τ) ≥ A (t) and EtB (τ) ≥ B (t) where Et

denotes throughout the paper the expectation conditional on time t. Given that capital and

labor are instantaneously mobile across sectors, factor prices wK (t) for capital and wL (t) for

labor are identical in both sectors. Thus, since technologies only differ in their TFP level,

we find from the equality of prices with marginal costs that the relative price of goods reads

pX (t)

pY (t)
=

B (t)

A (t)
. (5)

Capital is the only asset in which households can save. Capital accumulation is governed

by dK (t) = [I (t)− δK (t)] dt, where the investment good industry assembles the goods X
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and Y to obtain new production units, I (t) = ΦXσ
I (t)Y

1−σ
I (t), given some constant Φ > 0.

XI (t) and YI (t) are the aggregate savings of the households in the goods X and Y . When

the investment good industry produces under perfect competition as well, the price of one

unit of the investment good is, for a suitable choice of Φ,

pI (t) = pσX (t) p
1−σ
Y (t) . (6)

We now choose good Y (t) as numeraire. Real wealth of a typical household, measured

in units of Y (t), is then given by

a (t) ≡ pI (t) k (t)

pY (t)
=

µ
pX (t)

pY (t)

¶σ

k (t) , (7)

where k (t) stands for capital per household. As in the previous example, the change in k (t)

is governed by the difference between income and consumption expenditure, divided by the

price of capital,

dk (t) =
wK (t) k (t) + wL (t)− pX (t) cX (t)− pY (t) cY (t)

pI (t)
dt. (8)

We can now compute the evolution of a (t) by using CVF. With (5) and (7), a (t) can

be expressed by a (t) = [B (t) /A (t)]σ k (t). The differential of the TFP ratio B (t) /A (t)

is obtained by applying CVF from Corollary 2 on f (x, y) = x/y and on the stochastic

differentials in (4):

d
B (t)

A (t)
= (ψB − ψA)

B (t)

A (t)
dt+

µ
1

1 + γA
− 1
¶
B (t−)
A (t−)

dqA (t) + γB
B (t−)
A (t−)

dqB (t) . (9)

Then, using (5) and (6), we find with CVF from Corollary 1 applied on f (t, x, y) = yσx and

the differentials (8) and (9) that the evolution of real wealth is given by, cf. Appendix E,

da (t) = [ra (t) + wr
L (t)− cr (t)] dt− £1− (1 + γA)

−σ¤ a (t−) dqA (t)
+ [(γB + 1)

σ − 1] a (t−) dqB (t) , (10)

where r ≡ σ (ψB − ψA) +
wK(t)
pI(t)

stands for the real interest rate, wr
L (t) ≡ wL(t)

pY (t)
for real labor

income, and cr (t) ≡ pX(t)cX(t)
pY (t)

+ cY (t) for real consumption. Again, this budget is very

intuitive. Recall that real wealth is the value of the household’s capital holdings measured

in units of the consumption good Y , i.e., a = pIk/pY . The real interest rate is thus given

by wK(t)
pI(t)

, which is the rate of return of capital, expressed in units of capital, the household
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receives for her investment in producing X and Y , and by σ (ψB − ψA), which is the contin-

uous rate of change of the real capital price pI/pY . The latter statement is a consequence of

the relation pI/pY = [pX (t) /pY (t)]
σ = [B (t) /A (t)]σ and the dynamics of A (t) and B (t):

As A (t) and B (t) grow continuously at the rates ψA and ψB, respectively, the relative price

pX/pY changes, also continuously, at the rate ψB − ψA, which in turn leads to a change of

pI/pY at the rate σ (ψB − ψA). A similar story applies to the “jump terms”. A jump in

one of the TFPs A (t) and B (t) triggers a jump in the real capital price, thus leading to an

increase of wealth at the rate
£
1− (1 + γA)

−σ¤ and [(γB + 1)σ − 1], respectively.
2.4 Application III: The Hamilton-Jacobi-Bellman equation

In this subsection we show how an appropriate HJB equation can be heuristically derived

if one faces a stochastic control problem. For all practical purposes, this only requires the

application of CVF.

Take a household trying to find an optimal consumption process c∗ (t) that maximizes

the expected lifetime utility,7

Et0

Z ∞

t0

e−ρ(t−t0)u (c (t)) dt, (11)

subject to the budget constraint derived in Subsection 2.2,

da (t) = [r (t) a (t) + w (t)− p (t) c (t)] dt+ βa (t−) dq (t) , a (t0) > 0. (12)

As a starting point, we write the HJB equation in the general form as8

ρV (t, a (t)) = max
c(t)

½
u (c (t)) +

1

dt
EtdV (t, a (t))

¾
, (13)

where the maximum is achieved by the optimal consumption choice c∗ (t), and V denotes

the value function

V (t, a (t)) ≡ Et

Z ∞

t

e−ρ(s−t)u (c∗ (s)) ds,

which is the maximized expected lifetime utility in t given wealth a (t). The value function

therefore gives the highest value, in units of utility, the household can reach given an amount

a (t) of wealth. The general HJB equation (13) says that the household chooses consumption

7Later, in the example presented in Section 3, we shall go further into detail about the considered controls.
8For a heuristic derivation see Appendix F or Malliaris and Brock (1982) and Turnovsky (2000).
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in t such that she maximizes her instantaneous return from consumption, which consists

of the instantaneous utility flow u (c (t)) plus the expected change 1
dt
EtdV (t, a (t)) in the

value of wealth corresponding to the consumption choice in t. It tells furthermore that the

intertemporal return ρV (t, a (t)) from holding a (t) is given by the return from the optimal

consumption in t, u (c∗ (t)) + 1
dt
EtdV (t, a (t)). We see that, when determining the optimal

behavior at t, the household only needs to consider the value function at t and its expected

change in order to cover future behavior. This is a direct result of Bellman’s principle of

optimality, see, e.g., Bellman (1957) and cf. also Appendix F.

Assume that V is once continuously differentiable. Obtaining the HJB equation for

a specific maximization problem then requires (i) application of CVF on V (t, a (t)), (ii)

computing expectations and (iii) “dividing” by dt. With budget constraint (12) CVF from

Corollary 3 yields

dV (t, a (t)) = {Vt (t, a (t)) + Va (t, a (t)) [r (t) a (t) + w (t)− p (t) c∗ (t)]} dt
+ [V (t, (1 + β) a (t−))− V (t, a (t−))] dq (t) .

Using Etdqt = λdt, we get

EtdV (t, a (t)) = {Vt (t, a (t)) + Va (t, a (t)) [r (t) a (t) + w (t)− p (t) c∗ (t)]} dt
+λ [V (t, (1 + β) a (t))− V (t, a (t))] dt.

Dividing by dt gives finally the HJB equation for the maximization problem consisting of

(11) and (12):

ρV (t, a (t)) = max
c(t)≥0

 u (c (t)) + Vt (t, a (t)) + Va (t, a (t)) [r (t) a (t) + w (t)− p (t) c∗ (t)]

+λ [V (t, (1 + β) a (t))− V (t, a (t))]

 .

(14)

This approach is very practical, a rigorous background with the necessary assumptions can

be found in Sennewald (2006).

3 A typical maximization problem

We now present a maximization problem that consists in determining a household’s optimal

consumption and investment behavior. Finding closed form expressions for the optimal con-

trols is usually restricted to special cases. Nevertheless, for optimum-consumption problems

12



it is usually possible to derive a Keynes-Ramsey rule. We show how this can be achieved,

making use of the HJB equation as a necessary criterion for optimality. Then the closed form

solution is presented. Its optimality is verified by the fact that the HJB equation together

with a certain terminal condition is also a sufficient criterion for optimality.

3.1 The problem

Consider a household that is endowed with some initial wealth a (t0) > 0. At each instant,

the household can invest her wealth a (t) in both a risky and a safe asset. The amount the

household holds in the risky asset is denoted by b (t). Her investment in the safe asset is

then a (t)− b (t). The price v1 (t) of one unit of the risky asset obeys the SDE

dv1 (t) = r1v1 (t) dt+ βv1 (t−) dq (t) , (15)

where r1 ∈ R and β > 0. That is, the price of the risky asset grows at each instant with a

fixed rate r1 and at random points in time it jumps by β percent. The randomness comes

from the well-known Poisson process q (t) with arrival rate λ. The price v2 (t) of one unit of

the safe asset is assumed to follow

dv2 (t) = r2v2 (t) dt, (16)

where r2 ≥ 0. Let the household receive a fixed wage income w and spend c (t) ≥ 0 on

consumption.9 Then, in analogy to (3), the household’s budget constraint reads10

da (t) = {r1b (t) + r2 [a (t)− b (t)] + w − c (t)} dt+ βb (t−) dq (t) . (17)

Let the household’s time preference rate be given by the constant ρ > 0 and assume that

the planning horizon is infinite. Forming expectations about future consumption streams

and given the CRRA (constant relative risk aversion) utility function

u (c) =
c1−σ − 1
1− σ

, σ > 0, σ 6= 1, 11 (18)

9Unlike in Subsections 2.2 and 2.4, we consider here real variables expressed in units of the consumption

good.
10An alternative approach to derive the budget constraint is to start with the assumption of a “self-

financing portfolio”, a concept taken from finance, see Appendix G.
11The following also applies to the special case σ → 1, i.e. u (c) = log c.
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the household’s objective is given by maximizing the expected lifetime utility,

Et0

Z ∞

t0

e−ρ(t−t0)u (c (t)) dt, (19)

subject to the budget constraint (17). The time preference rate ρ is assumed to be sufficiently

high so that (19) is finite. In order to avoid a trivial investment problem, we assume

r1 < r2 < r1 + λβ. (20)

The guaranteed return r1 of the risky asset is lower than the return r2 of the riskless asset,

while the expected return r1 + λβ of the risky asset is greater than r2. Note that this

assumption implies that β > 0 which is consistent with our assumption above.

The control variables of the household are the nonnegative consumption stream c (t) and

the amount b (t) invested in the risky asset. There exist various types of controls that may

be considered: Feedback controls that depend on the whole history of a (t), Markov controls

that depend on current time and wealth, or generalized controls that, roughly speaking, do

not depend on “anything” observable. Obviously, the class of Markov controls is contained

within the two other classes of controls which means that Markov controls may yield a

suboptimal performance. Nevertheless, for the problem at hand, and in other applications

where the constraint is Markovian as well,12 it is in general sufficient to focus on Markov

controls only since one obtains as good a performance with Markov controls as with any

other class of controls. But observe that, though being extremely plausible, this result is

technically not at all obvious. Many authors address this issue and present corresponding

theorems that prove the optimal performance of Markov controls under mild conditions. See,

e.g., Sennewald (2006, Theorem 5) or, for a setup with Brownian motion, Øksendal (2000,

Theorem 11.2.3).

For now assume that there exist optimal Markov controls, denoted by c∗ (t) and b∗ (t),

maximizing the expected lifetime utility (19) subject to budget constraint (17). Then we

define the value function V by

V (a (t0)) ≡ Et0

Z ∞

t0

e−ρ(t−t0)u (c∗ (t)) dt.

12Roughly speaking, the constraint is Markovian if the change, i.e., the differential, of the controlled

process only depends on current variables and if the underlying noise process is Markovian, cf. SDE (17).

14



Finding the optimal Markov controls and the value function can be achieved by the HJB

equation, which, derived as in Subsection 2.4 or taken from Sennewald (2006), reads

ρV (a) = max
c≥0,b

{u(c) + [r1b+ r2 (a− b) + w − c]V 0 (a) + λ [V (ã)− V (a)]} , (21)

where ã ≡ a + βb denotes the post-jump wealth if at wealth a a jump in the risky asset

price occurs. The maximum is attained by the optimal Markov control values c∗ and b∗

corresponding to wealth a. The HJB equation is under certain conditions both a necessary

and sufficient criterion for optimality. In the following subsections we show how either

property can be used to tackle the control problem.

3.2 The Keynes-Ramsey rule

3.2.1 Preliminary conditions

Making use of the fact that according to Sennewald (2006, Theorem 3) the HJB equation

is a necessary criterion for optimality, we derive in the following a stochastic form of the

Keynes-Ramsey rule. This rule tells us how optimal consumption changes over time. Before

turning to the actual derivation in Subsection 3.2.2, we first specify state and control space

and show that the conditions required in Sennewald (2006) are satisfied in our example.

Let the state and control space be given as follows. Wealth is allowed to become negative,

but the debts shall always be covered by the household’s lifetime labor income discounted

with the safe interest rate r2. That is, a (t) > −w/r2 for all t. Given this condition, it is
only natural to assume that consumption shall not exceed total wealth consisting of current

physical wealth plus the present value of future labor income,

0 ≤ c (t) ≤ a (t) +
w

r2
. (22)

In addition, we do not allow short-selling of the risky asset, whereas, on the other hand, the

household can finance risky investment by short-selling the safe asset.13 Again, the limit for

this kind of borrowing is given by lifetime labor income, i.e., a (t)− b (t) ≥ −w/r2. Hence,

0 ≤ b (t) ≤ a (t) +
w

r2
. (23)

13Consider the safe asset as a bank account and observe that in many countries short-selling of stocks is

not allowed.
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Then the set of admissible controls contains all cádlág processes c (t) and b (t) satisfying

conditions (22) and (23) such that the associated wealth process always remains above the

level −w/r2. Assume that the optimal Markov controls c∗ (t) and b∗ (t) are admissible.

So far, working with the HJB equation as a necessary criterion has required, among other

things, the boundedness of utility function (18) and of the coefficients in budget constraint

(17). Apparently, neither (17) nor (18) do satisfy this condition. Sennewald (2006, Theorem

3) relaxes this requirement and shows that linear boundedness suffices. That means we

can still use the HJB equation if we find constants µ, pi, qi > 0, i = 1, 2, such that for all

a > −w/r2 and admissible c and b

|u (c)| ≤ µ (c+ 1) , (24)

|r1b+ r2 (a− b) + w − c| ≤ p1 |a|+ q1, (25)

and

|βb| ≤ p2 |a|+ q2. (26)

In addition, the optimal controls c∗ and b∗ must be linearly bounded in a too. That is, for

some γ > 0,

k(c∗, b∗)k ≡ √c∗2 + b∗2 ≤ γ (1 + a) . (27)

Using (22) and (23), we easily obtain (25) to (27) with p1 = max {r2, 1− r1}, q1 =
max {w, (1− r1)w/r2}, p2 = β, q2 = βw/r2, and γ =

√
2w/r2.

14 Condition (24) is trivially

met with µ = 1
1−σ if the risk aversion parameter σ in utility function (18) is less than one.

In the case of log-utility or for σ > 1, things are more complicated. Though bounded from

above,15 u (c) is not linearly bounded from below since it falls too fast toward −∞ as c tends

to 0. We therefore assume that there exists a threshold ε > 0 below which the consumption

expenditure never falls. This assumption is justified if one recalls that marginal utility

becomes infinity as consumption tends to 0. Thus, zero-consumption can never be optimal.

Hence, if we choose ε small enough, we find that utility is bounded from below by ln ε and¡
ε−(σ−1) − 1¢ / (1− σ), respectively. Jointly with the (linear) boundedness from above, this

immediately yields (24) with µ = |ln �| for σ = 1 and µ =
¡
ε−(σ−1) − 1¢ / (σ − 1) for σ > 1.

14Note that if we had choosen as control variable the share of wealth invested in the risky asset instead of

the absolut amount b, condition (27) could hardly be satisfied.
15ln c is linearly bounded from above by c, whereas an upper bound for c1−σ−1

1−σ , σ > 1, is given by 1
σ−1 .
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Beside the linear-boundedness conditions (24)-(27), a certain regularity condition must

hold, see assumption (H4) in Sennewald (2006). But in order to satisfy this technical condi-

tion, we merely need to assume a sufficiently high time preference rate, namely ρ > q1+λq2,

cf. Remark 1(iii) in Sennewald (2006).16 Then, given that the value function is sufficiently

smooth, the HJB equation is a necessary criterion for optimality.

3.2.2 Deriving the Keynes-Ramsey rule

Since c∗ and b∗ maximize the right-hand side in the HJB equation (21), the following first-

order conditions must be satisfied if c∗ and b∗ are not corner solutions with respect to the

constraints (22) and (23):

u0 (c∗) = V 0 (a) (28)

and

V 0 (a) (r1 − r2) + λV 0 (ã∗)β = 0, (29)

where ã∗ ≡ a + b∗β denotes the post-jump wealth for the optimal investment behavior.

Replacing according to (28) V 0 by u0 in equation (29) yields

u0 (c̃∗)
u0 (c∗)

=
r2 − r1
λβ

, (30)

where c̃∗ denotes the optimal consumption choice corresponding to ã∗. Hence, the ratio for

optimal consumption after and before a jump is constant:

c̃∗

c∗
=

µ
λβ

r2 − r1

¶1/σ
. (31)

Since by assumption (20) the term on the right-hand side is greater than one, this equation

shows that consumption jumps upwards if a jump in the risky asset price occurs. This result

is not surprising since, if the risky asset price jumps upwards, so does the household’s wealth.

In the next step, we compute the evolution of V 0 (a∗ (t)), where a∗ (t) denotes the wealth

process associated to the optimal consumption and investment behavior. Assume that V is

twice continuously differentiable. Then, due to budget constraint (17), CVF from Corollary

3 yields

dV 0 (a∗ (t)) = {r1b∗ (t) + r2 [a
∗ (t)− b∗ (t)] + w − c∗ (t)}V 00 (a∗ (t)) dt

+ [V 0 (ã∗ (t−))− V 0 (a∗ (t−))] dq (t) . (32)

16In any cases, ρ has to be high enough in order to ensure a finite objective function (19). The regularity

condition (H4), however, might require an even higher ρ.
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On the other hand, differentiating the maximized HJB equation (21) evaluated at a∗ (t)

yields under application of the envelope theorem

ρV 0(a∗ (t)) = {r1b∗ (t) + r2 [a
∗ (t)− b∗ (t)] + w − c∗ (t)}V 00(a∗ (t)) + r2V

0 (a∗ (t))

+λ [V 0 (ã∗ (t))− V 0 (a∗ (t))] .

Rearranging gives

{r1b∗ (t) + r2 [a
∗ (t)− b∗ (t)] + w − c∗ (t)}V 00(a∗ (t))

= ρV 0(a∗ (t))− r2V
0 (a∗ (t))− λ [V 0 (ã∗ (t))− V 0 (a∗ (t))] .

Inserting this expression into (32) yields

dV 0 (a∗ (t)) = {(ρ− r2)V
0 (a∗ (t))− λ [V 0 (ã∗ (t))− V 0 (a∗ (t))]} dt

+ [V 0 (ã∗ (t−))− V 0 (a∗ (t−))] dq (t) .

Replacing, according to the first-order condition (28) for optimal consumption, V 0 by u0 we

obtain

du0 (c∗ (t)) = {(ρ− r2)u
0 (c∗ (t))− λ [u0 (c̃∗ (t))− u0 (c∗ (t))]} dt

+ [u0 (c̃∗ (t−))− u0 (c∗ (t−))] dq (t) .

Applying now the CVF from Corollary 3 to f (x) = (u0)−1 (x) leads to the Keynes-Ramsey

rule for general utility functions u,

− u00 (c∗)
u0 (c∗ (t))

dc∗ (t) =
½
r2 − ρ− λ

·
1− u0 (c̃∗ (t))

u0 (c∗ (t))

¸¾
dt− [c̃∗ (t−)− c∗ (t−)]

u00 (c∗)
u0 (c∗ (t))

dq (t) .

For the CRRA utility function as given as in (18) we get by eliminating u0 (c̃∗t ) according to

(30) and c̃∗t according to (31)

dc∗ (t)
c∗ (t−)

=
1

σ

·
r2 − λ

µ
1− r2 − r1

λβ

¶
− ρ

¸
dt+

"µ
λβ

r2 − r1

¶1/σ
− 1
#
dq (t) . (33)

The optimal change in consumption can thus be expressed in terms of well-known parameters.

As long as the price of the risky asset does not jump, optimal consumption grows constantly

by the rate
h
r2 − λ

³
1− r2−r1

λβ

´
− ρ
i
/σ. The higher the risk-free interest rate r2 and the

lower the guaranteed interest rate r1 of the risky asset, the discrete growth rate β, the
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probability of a price jump λ, the time preference rate ρ, and the risk aversion parameter

σ, the higher becomes the consumption growth rate. When the risky asset price jumps,

consumption jumps as well to its new higher level c∗ (t) =
³

λβ
r2−r1

´1/σ
c∗ (t−). Here the

growth rate depends positively on λ, β, and r1, whereas r2 and σ have negative influence. A

detailed discussion about the impact of risk on the average consumption growth is provided

in Subsection 3.4.2.

3.3 A closed form solution

3.3.1 General approach: Guessing the value function

A Keynes-Ramsey rule describes “only” the optimal change in consumption over time. In

the following we present a closed form solution, which tells us explicitly how to choose opti-

mal consumption and investment levels. Obtaining closed form expressions for the optimal

controls and the value function is not obvious.17 Looking for them has a long tradition in

finance (see, e.g., Merton, 1969, 1971 or Framstad et al., 2001) and also in macroeconomics

(see, e.g., Wälde 1999a). Finding a closed form solution is in general the result of an “edu-

cated guess”. That means, we consider already solved optimization problems that are similar

to ours and try to deduce a solution from them. Chang (2004) devotes an entire chapter on

how to derive value functions in various setups with Brownian motion. After having found a

candidate for a solution, it has to be verified. To this end, one can use a so called verification

theorem. Such a theorem tells us that, if the candidate for the optimal solution solves the

HJB equation and if furthermore certain limiting conditions are satisfied, the candidate is

indeed optimal, cf. Sennewald (2006, Theorem 4). In other words, the HJB equation is

a sufficient criterion for optimality. Interestingly, unlike necessity this sufficiency property

does not require any boundedness conditions on the primitives at all.

From similar consumption and investment problems in Merton (1969, 1971) and elsewhere

17Unfortunately, finding explicit expressions for the optimal controls is rather the exception. In more

general setups, for example, with non-constant interest rates (which are typical when modeling transitional

dynamics or when considering macroeconomic models of growth for non AK-type economies) closed-form

solutions can only be derived if certain parameter restriction are met, see, e.g., Wälde (2005) and the

references therein. The same holds if labor income is stochastic or if the capital market is imperfect, see,

e.g., van der Ploeg (1993) (for a discrete-time setup) or Duffie, Fleming, Soner, and Zariphopoulou (1997).

Deriving a Keynes-Ramsey rule along the lines of Subsection 3.2 should, however, always be possible.
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we can guess that the value function is of the form

J (a) =
Γ1 [a+ Γ2]

1−σ − Γ3
1− σ

(34)

with unknown constants Γ1,Γ2, and Γ3. In the following steps, this rather vague expres-

sion for the candidate of the value function is used to derive the optimal consumption and

investment behavior as well as explicit expression for Γ1, Γ2 and Γ3.

3.3.2 Deriving and verifying optimal consumption and investment

Let the state space again be given by all a > −w/r2, while for the moment the control space
constraints (22) and (23) are relaxed to c ≥ 0 and b ∈ R. Starting from the candidate for

the value function in (34) and using the verification theorem 4 in Sennewald (2006), we show

how the optimal consumption and investment behavior can be both derived and verified at

the same time. The proceeding consists of two steps:

1.) Does the candidate for the value function solve the HJB equation

ρJ(a) = max
{c≥0,b∈R}

n
u(c) + [r1b+ r2 (a− b) + w − c]J

0
(a) + λ [J (ã)− J (a)]

o
(35)

and is the maximum in (35) attained by the candidates for the optimal controls, c∗ and b∗?

2.) Are the limiting conditions

lim
t→∞

Et0

£
e−ρtJ (a∗ (t))

¤
= 0 (36)

and

lim
t→∞

Et0

£
e−ρtJ (a (t))

¤ ≥ 0 (37)

satisfied, where a (t) denotes the wealth process associated to an arbitrary admissible Markov

control?

At first, we derive in step 1.) the constants Γ1,Γ2,Γ3 and the candidates for the optimal

controls such that HJB equation (35) holds. Then we show in step 2.) that these candidates

satisfy limiting conditions (36) and (37).

Step 1.) (Cf. also Sennewald, 2006, Corollary 4) Since the right-hand side of the HJB

equation (35) is strictly concave in c and b, the HJB equation holds if the following two points

are satisfied: (a) The candidates for the optimal controls solve the first-order conditions for

the maximum on the right-hand side in (35); (b) The candidates for the optimal controls

yield equality in (35).
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Point (a) makes sure that c∗ and b∗ maximize the right-hand side in (35). If in addition

point (b) is satisfied, we can conclude that the HJB equation holds.

ad a) The first-order conditions read (cf. also (28) and (29)) u0 (c∗) = J 0 (a) and

J 0 (a) (r1 − r2)+λJ
0 (ã∗)β = 0. Rearranging the latter equation yields (a+ Γ2)

−σ (r2 − r1) =

λ (a+ βb∗ + Γ2)
−σ β. Therefore, the optimal consumption must be

c∗ = Γ
− 1
σ

1 (a+ Γ2) , (38)

and the optimal share invested in the risky asset is

b∗ =
1

β

"µ
λβ

r2 − r1

¶ 1
σ

− 1
#
(a+ Γ2) . (39)

ad b) Inserting (38) and (39) into the maximized HJB equation (35) gives unique ex-

pressions for Γ1,Γ2, and Γ3, such that finally the candidate for the value function reads
18,19

J (a) =

1
ψσ

³
a+ w

r2

´1−σ
− 1

ρ

1− σ
, (40)

with the constant

ψ =
1

σ
(ρ+ λ)− 1− σ

σ

µ
r2 +

r2 − r1
β

¶
− λ

µ
λβ

r2 − r1

¶1−σ
σ

. (41)

Thus, according to (38), optimal consumption must obey

c∗ = ψ

µ
a+

w

r2

¶
, (42)

whereas, by (39), the optimal amount held in the risky asset can only be

b∗ =
1

β

"µ
λβ

r2 − r1

¶ 1
σ

− 1
#µ

a+
w

r2

¶
. (43)

Note that total wealth a + w/r2 is according to state space constraint a > −w/r2 always
positive. Thus, in order to derive economically meaningful solutions, we require ψ to be

positive too. That means the time preference rate must be high enough, namely, after

rearranging (41), such that

ρ > (1− σ) r2 +
r2 − r1

β

(
σ

"µ
λβ

r2 − r1

¶ 1
σ

− 1
#
−
·

λβ

r2 − r1
− 1
¸)

. (44)

18More precisely, Γ1, Γ2, and Γ3 follow by a comparison of coefficients, see Appendix H or, for a setup

with Brownian motion, Chang (2004, Ch. 5).

19In case of log-utility we obtain ψ = ρ and V (a) = 1
ρ

·
ln
³
a+ w

r2

´
+ ln ρ− 1 + λ

³
r2−r1
λβ −1+ln λβ

r2−r1

´
+r2

ρ

¸
.
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Using Lemma 2 in Appendix B, we find that the right-hand side is negative iff σ > 1, zero

iff σ = 0, and positive iff σ < 1. Thus, if σ ≥ 1, (44) is trivially satisfied for any ρ > 0.
Notice that with (42) and (43), we have derived the (only) controls corresponding to the

guessed value function (34) that maximize the HJB equation. Thus, if now the terminal

conditions in step 2.) are satisfied, we know that these controls are optimal.

Step 2.) This step requires some calculation. At first, we check limiting condition (36).

Due to the shape of J as given as in (40), it suffices to show that

lim
t→∞

e−ρtEt0

·
a∗ (t) +

w

r2

¸1−σ
= 0. (45)

To this end, we derive an explicit expression for [a∗ (t) + w/r2]
1−σ. According to CVF in

Corollary 3, the total wealth process a∗ (t)+w/r2 obeys budget constraint (17) with starting

point a (t0) + w/r2. Inserting the candidates for optimal consumption and investment from

(42) and (43) into the budget constraint yields

d

·
a∗ (t) +

w

r2

¸
= η1

·
a∗ (t) +

w

r2

¸
dt+ η2

·
a∗ (t−) +

w

r2

¸
dq (t) ,

where η1 =
1
σ

h
r2 − λ

³
1− r2−r1

λβ

´
− ρ
i
and η2 =

³
λβ

r2−r1

´ 1
σ − 1. The solution of this linear

stochastic differential equation reads (see Garcia and Griego, 1994)

a∗ (t) +
w

r2
=

·
a (t0) +

w

r2

¸
expη1(t−t0)+ln(1+η2)q(t) .

Using that for any Poisson distributed random variable X with parameter λ, E expaX+b =

expλ(exp
b−1)+a, we find further

Et0

·
a∗ (t) +

w

r2

¸1−σ
=

·
a (t0) +

w

r2

¸1−σ
exp{(1−σ)η1+λ[(1+η2)1−σ−1]}(t−t0) .

Therefore, (45) and thus (36) as well are satisfied if and only if

ρ > (1− σ) η1 + λ
£
(1 + η2)

1−σ − 1¤ .
Inserting η1 and η2 and rearranging shows that this parameter constellation is already met

by (44). The limiting condition (36) is hence satisfied. This connection between positive

consumption and limiting condition (36) was also found by Merton (1990) in a revised version

of his paper from 1969 for the case with Brownian motion as noise.
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It remains to be shown that limiting inequality (37) holds for any arbitrary admissi-

ble Markov control. For the case 0 < σ < 1, we use that the candidate for the value

function (40) is always greater than − [ρ (1− σ)]−1. Therefore, limt→∞Et0 [e
−ρtJ (a (t))] ≥

− limt→∞ e−ρt
ρ(1−σ) = 0 is trivially satisfied.

For σ ≥ 1, finding a lower bound for J (a (t)) is less simple since we can not rule out that
J (a (t)) approaches −∞, which happens if a (t) approaches the boundary of the state space,
−w/r2. Thus, for (37) to be satisfied, we have to show that J (a (t)) tends to −∞ with a rate

less than ρ. To this end, we first derive the lowest a (t) the household can achieve. Assume

without loss of generality that the household is in debt, a (t) < 0. Now, introducing again

control space constraints (22) and (23), one can show easily that the infinitesimal change of

a (t) is always greater than − (1− r1) [a (t) + w/r2]. Thus, using a comparison principle as,

e.g., Bassan et al. (1993, Corollary 3.5), we conclude that a (t) ≥ ã (t), where ã (t) is the

solution of dã (t) = − (1− r1) [ã (t) + w/r2] dt, ã (t0) = a (t0). Solving this linear differential

equation yields ã (t) = (1− w/r2) exp
−(1−r1)[t−t0] a (t0)− w/r2. Hence,

lim
t→∞

Et0

£
e−ρtJ (a (t))

¤ ≥ lim
t→∞

e−ρtJ (ã (t))

= −
h³
1− w

r2

´
a (t0)

i−(σ−1)
exp−ρt0

(σ − 1)ψσ lim
t→∞

exp−[ρ−(σ−1)(1−r1)][t−t0] .

Thus, for limiting condition (37) to be satisfied, we need again a sufficiently high time

preference, namely ρ > (σ − 1) (1− r1). The latter condition completes the verification, and

the derived candidates (42) and (43) for the optimal controls are indeed optimal.

Summarizing, verification only required the time preference rate to be high enough. For

the case σ ≥ 1 we introduced again control space constraints (22) and (23). It remains to
be shown that for σ ≥ 1 the optimal controls indeed satisfy these constraints. Inserting

the expression (42) and (43) for optimal consumption and investment into (22) and (23),

respectively, shows that for this purpose we need merely to assume that ψ ≤ 1 and that
λβ/ (r2 − r1) ≤ (1 + β)σ. The first condition is only natural since otherwise consumption

was permanently higher than total wealth. The latter inequality means that the expected

return λβ from a jump in the risky asset price shall not exceed the “opportunity costs”

r2 − r1 for investment in the risky asset too much. Then, the household is not willing to

borrow more than her total wealth a+ w/r2 to finance risky investment.

Finally, there is still one interesting point that shall be addressed, namely the uniqueness
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of the derived solution c∗, b∗, and J . First, since we know by the preceding verification that J

in (40) is equal to the value function V , uniqueness of J follows directly from the uniqueness

of V , which is due to its definition on page 14. Then we use that the value function and

any set of optimal Markov controls satisfy according to Subsection 3.2 necessarily the HJB

equation. Thus, optimal controls are associated to J by the first-order conditions (28) and

(29) for maximizing the HJB equation. Now, since u0 and J 0 in (28) and (29) are monotone

(and unique), these first-order conditions pin-down uniquely the optimal controls c∗ and b∗

as presented in (42) and (43).

3.4 Economic insights

3.4.1 General results

Both optimal consumption (42) and optimal investment (43) are constant fractions of total

wealth, a+w/r2. The household thus does not relate optimal consumption and investment

only to current physical wealth but also to lifetime labor income. This result is in line with

the findings derived by e.g., Merton (1971) for Brownian motion as noise.

What has not been stressed before is that this implies a behavior that seems somehow

paradox in light of the household’s (constant relative) risk aversion: First, if the household

is poor or in debt (a very low or negative), consumption exceeds physical wealth and the

household runs (further) into debt. Second, dividing (43) by a shows that the lower physical

wealth, the higher the share b∗/a of physical wealth invested in the risky asset. In addition,

when being very poor or being in debt, the optimally behaving household “borrows” (even

more) by short-selling the risk-free asset in order to finance risky investment (a − b∗ < 0).

However, in either case, the households can act in that way as he knows that future wage

income is used to repay the debt.

3.4.2 Risk and consumption growth

In the following we consider the impact of uncertainty on average consumption growth.

Uncertainty is measured by the variance of the stochastic component, which is the price

v1 (t) of the risky asset given by SDE (15). We must thus change parameters in such a way

that the variance of v1 (t) rises while its expectation remains unaltered. In other words, we

consider a mean preserving spread.
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Following Appendix A, expectation of v1 (t) is given by

E0v1 (t) = v1 (t0) exp
(r1+λβ)(t−t0), (46)

and variance by Var0 v1 (t) = [E0v1 (t)]
2
h
expλβ

2(t−t0)−1
i
. A mean preserving spread can

thus be achieved by an increase of the randomly occurring price jump β to κβ, where κ > 1,

and by a simultaneous decrease of the frequency of such a price jump, i.e., by reducing

the arrival rate λ to λ/κ.20 Then the expectation of the new price process, which shall be

denoted by vκ1 (t), is identical to (46), while the variance increases to

Var0 v
κ
1 (t) = [E0v1 (t)]

2
h
expκλβ

2(t−t0)−1
i
> Var0 v1 (t) , κ > 1.

The household’s response to higher risk, captured by κ > 1, is a reallocation of his portfo-

lio toward the risk-free asset (a result easily derived by considering b∗ in (43)) and, as shown

in Appendix B, an increase (decrease) of his consumption level in case of low risk aversion,

i.e., σ < 1 (high risk aversion, i.e., σ > 1), whereas for σ = 1 consumption expenditure

remains unchanged at c∗ = ρ (a+ w/r2). Thus, only in case of high risk aversion (σ > 1) the

household has a motive for precautionary saving. The result on b∗ does not require further

explanation in light of the household’s risk aversion. Neither does the consumption shift

since the mechanism behind it, though for different settings, is well-known and extensively

discussed by many authors. Take, for example Merton (1969), who analyses uncertainty

from Brownian motion, or Sandmo (1970), who considers an one-asset consumption problem

in discrete time. They show that in case of low risk aversion (σ < 1) the intertemporal

substitution effect dominates the income effect, while the contrary holds true for σ > 1. If

σ = 1, both effects offset each other.

As the latter statements show, the total effect of risk on the average consumption growth

is not obvious, at least not for the empirical relevant case σ > 1. In order to find out

whether consumption growth accelerates or slows down, we consider Keynes-Ramsey rule

(33) applied on the optimal consumption process c∗κ (t) that is associated to risk parameter

κ. Forming expectation yields the average growth rate of c∗κ (t),

η (κ) ≡ dE0c
∗
κ (t) /dt

E0c∗κ (t)
=
1

σ

·
r2 − λ

κ

µ
1− r2 − r1

λβ

¶
− ρ

¸
+

λ

κ

"µ
λβ

r2 − r1

¶ 1
σ

− 1
#
. (47)

20This is an alternative to Steger (2005) who uses two symmetric Poisson processes instead of one here.

He obtains higher risk at an invariant mean by increasing the symmetric jump size.
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The change of consumption growth η0 in response to increasing risk is then simply derived

by differentiating the latter expression with respect to κ, which yields evaluated at κ = 1

η0 ≡ η0 (1) =
λ

σ

µ
1− r2 − r1

λβ

¶
− λ

"µ
λβ

r2 − r1

¶ 1
σ

− 1
#
. (48)

Appendix C shows that η0 < 0. Hence, increasing risk leads to lower expected consumption

growth for any level of risk aversion. In particular, in case of log-utility, the average con-

sumption growth is lower under uncertainty than in the corresponding deterministic setting,

despite the identical consumption rule c∗ = ρ (a+ w/r2).

3.4.3 Precautionary saving and reallocation

We now distinguish between two channels through which uncertainty influences growth, the

precautionary saving effect η0prec and the portfolio-reallocation effect η
0
reallo. It turns out that

the impact of the precautionary saving effect is ambiguous, depending on the household’s

risk aversion, while reallocation always implies lower average consumption growth. More

precisely, we find that in case of low risk aversion (σ < 1), the precautionary saving effect

is negative and amplified by the reallocation effect, whereas if risk aversion is high (σ > 1),

the precautionary saving effect is positive and dominated by the reallocation effect. In case

of log-utility (σ = 1) the decrease in the expected consumption growth is entirely due to

portfolio reallocation.

We can identify the precautionary saving effect by considering expected growth of the

optimal consumption process c∗κ,prec (t) that is obtained upon eliminating the reallocation

effect. That means, c∗κ,prec (t) is the solution of an optimum-consumption problem in which

the household cannot reallocate her portfolio or, in other words, in which for all κ > 1 the

amount held in the risky asset is given by b∗ from (43). The corresponding Keynes-Ramsey

rule is derived in Appendix D, equation (56). Forming expectation yields the expected

“precautionary consumption growth”

ηprec (κ) ≡
dE0c

∗
κ,prec (t) /dt

E0c∗κ,prec (t)
= −1

σ

½
(ρ− r)− λ

κ

£
(1 + κβγ)1−σ − 1¤¾+ λβγ, (49)

where γ ≡ 1
β

·³
λβ

r2−r1

´ 1
σ − 1

¸
. Differentiating with respect to κ, replacing γ, and evaluating

the derived expression at κ = 1 leads to the precautionary saving effect,

η0prec ≡ η0prec (1) =
λ

σ

µ
1− r2 − r1

λβ

¶
− λ

"µ
λβ

r2 − r1

¶ 1
σ

− 1
#
r2 − r1
λβ

. (50)
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Rearranging shows that η0prec < 0 iff σ

·³
λβ

r2−r1

´ 1
σ − 1

¸
> λβ

r2−r1 − 1, which in turn holds true
iff σ < 1, see Lemma 2 in Appendix B. Analogously we obtain for σ > 1, η0prec > 0 and for

σ = 1, η0prec = 0. Thus, if risk aversion is low (high), increasing risk leads to lower (higher)

consumption growth induced by precautionary saving, whereas, if σ = 1, it has no impact

on the consumption growth that is due to precautionary saving at all. These findings mirror

the aforementioned result on the impact of uncertainty on the optimal consumption rule.

The reallocation effect η0reallo is now obtained by the difference η
0 − η0prec, which reads

with (48) and (50)

η0reallo = λ

"µ
λβ

r2 − r1

¶ 1
σ

− 1
#µ

r2 − r1
λβ

− 1
¶
.

According to assumption (20), this expression is always negative which means that reallo-

cation due to increasing uncertainty lowers average consumption growth. This result is not

surprising in view of the aforementioned reallocation toward the risk-free asset since as a

consequence the average return of wealth declines.

4 Conclusion

This paper has given examples of how the CVF and the HJB equation can be used to analyze

optimal behavior in an optimal control setup of Poisson uncertainty. When a closed form

solution for optimal behavior is available, further analysis is straightforward. When only

a Keynes-Ramsey rule can be derived, further analysis can use, e.g., phase diagrams to

understand properties of optimal behavior.

The presented derivations and results should apply in different setups with Poisson pro-

cesses as well. The principles of deriving a Keynes-Ramsey rule or closed form solutions,

when available, remain the same.

We assumed throughout the paper independency of the underlying Poisson processes. A

more realistic modeling, however, might require correlated processes. A derivation of CVF

and HJB equation for such setups is left for further research.
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A Expectation and variance of a risky asset

Taking expectation on the differential (15) of the risky asset price v1 (t) yields dE0v1 (t) =

(r1 + λβ)E0v1 (t) dt. The expected return is thus r1 + λβ and the expected price level at

time t reads

E0v1 (t) = v1 (t0) exp
(α+λβ)(t−t0) . (51)

In order to calculate the second moment E0v
2
1 (t), we apply the CVF from Corollary 3 on

f (x) = x2 and differential (51) to find that dv21 (t) = 2αv
2
1 (t) dt+

¡
β2 + 2β

¢
v21 (t−) dqt. Tak-

ing expectation and solving the resulting differential equation for E0v
2
1 (t) gives E0v

2
1 (t) =

v21 (t0) exp
[2α+λ(β2+2β)](t−t0). Combining the latter equation with (51) yields finally Var0 v1 (t) =

[E0v1 (t)]
2
h
expλβ

2(t−t0)−1
i
. For more on expectations and higher moments, see, e.g., Wälde

(2006, Ch. 9).

B Risk and the optimal consumption rule

First of all we state the following lemma, which shall be of use throughout the paper.

Lemma 2 Let x > 1 be an arbitrary real number. Then the following inequalities holds true:

lnx+
1

x
> 1 (52)

and

σ
³
x
1
σ − 1

´
> x− 1 if 0 < σ < 1

= x− 1 if σ = 1

< x− 1 if σ > 1

. (53)

Proof. Differentiating the left-hand side of (52) with respect to x yields 1
x
− 1

x2
, which

is clearly positive for x > 1. Hence, since the left-hand side is equal to the right-hand side

for x = 1, inequality (52) holds true.

Consider now (53). For σ = 1 the assertion follows immediately. In order to prove the

result for σ 6= 1 we differentiate the left-hand side with respect to σ, which gives x 1
σ − 1−

x
1
σ lnx

1
σ . Upon dividing by x

1
σ , (52) shows that this derivation is negative for all σ > 0. The

left-hand side in (53) is thus greater (less) than the right-hand side for σ < 1 (σ > 1), which

finishes the proof.
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We now turn to the impact of risk, captured by κ, on the consumption expenditure.

According to (42) the optimal level of consumption expressed as a function of κ reads

c∗ (κ) =

"
1

σ

µ
ρ+

λ

κ

¶
− 1− σ

σ

µ
r2 +

r2 − r1
κβ

¶
− λ

κ

µ
λβ

r2 − r1

¶ 1−σ
σ

#·
a+

w

r2

¸
.

Differentiating with respect to κ yields

c∗0 (κ) =

"
−1
σ

λ

κ2
+
1− σ

σ

µ
r2 − r1
κ2β

¶
+

λ

κ2

µ
λβ

r2 − r1

¶ 1−σ
σ

#·
a+

w

r2

¸
.

Rearranging shows that c∗0 (κ) > 0 iff σ

·³
λβ

r2−r1

´ 1
σ − 1

¸
> λβ

r2−r1−1. Following (53) in Lemma
2, we find that this inequality holds true iff σ < 1, and we can conclude that c∗0 (κ) > 0 for

σ < 1, c∗0 (κ) = 0 for σ = 1, and c∗0 (κ) < 0 for σ > 1.

C Risk and the optimal consumption growth

We show that the average consumption growth η (κ) is decreasing in κ. Differentiating (47)

gives upon rearranging that η0 (κ) < 0 iff 1
σ

³
1− r2−r1

λβ

´
−
·
exp

1
σ
ln
³

λβ
r2−r1

´
−1
¸
< 0. Using the

power series expansion of the exponential function and taking into account that due to (20),
λβ

r2−r1 > 1, we find that the latter inequality is satisfied if
³
1− r2−r1

λβ

´
− ln

³
λβ

r2−r1

´
< 0. As

by (52) from Lemma 2 this inequality holds always true, we conclude that η0 (κ) < 0.

D The precautionary saving effect

The precautionary saving effect is obtained by fixing the household’s portfolio composition

when increasing risk. That is, for all κ > 1 the amount bκ held in the risky asset is given by

the optimal amount b∗ from (43) for the original setup. Thus,

bκ = b∗ = γ

µ
a+

w

r2

¶
, (54)

where γ ≡ 1
β

·³
λβ

r2−r1

´ 1
σ − 1

¸
. The corresponding optimal consumption process c∗κ,prec (t) is

then given as the solution of the maximization problem maxc(t)≥0Et0

R∞
t0

e−ρ(t−t0)u (c (t)) dt

subject to dA (t) = [rA (t)− c (t)] dt + κβγA (t−) dqκ (t), where A (t) stands for the total

wealth process a (t) + w/r2, r for the constant deterministic return γr1 + (1− γ) r2, and
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qκ (t) for a Poisson process with arrival rate λ/κ.21 In analogy to Subsection 3.2 we derive

the corresponding Keynes-Ramsey rule,

dc∗κ,prec (t)
c∗κ,prec (t−)

= −1
σ

½
(ρ− r)− λ

κ

·
(1 + κβγ)

µ
c∗κ,prec (t)
c̃∗κ,prec (t)

¶σ

− 1
¸¾

dt+

·
c̃∗κ,prec (t−)
c∗κ,prec (t−)

− 1
¸
dqκ (t) ,

(55)

where c̃∗κ,prec (t) stands for the still unknown optimal consumption decision for (1 + κβγ)A (t),

i.e., after a jump of qκ (t) has taken place. In order to derive a suitable expression for the ra-

tio
c̃∗κ,prec(t)
c∗κ,prec(t)

we use the same methods as in Subsection 3.3 to obtain the optimal consumption

rule c∗κ,prec (A) =
©
ρ− (1− σ) r − λ

κ

£
(1 + κβγ)1−σ − 1¤ªA/σ, which is linear in A. Thus,

c̃∗κ,prec(t)
c∗κ,prec(t)

= 1 + κβγ and Keynes-Ramsey rule (55) can be rewritten to

dc∗κ,prec (t)
c∗κ,prec (t−)

= −1
σ

½
(ρ− r)− λ

κ

£
(1 + κβγ)1−σ − 1¤¾ dt+ κβγdqκ (t) . (56)

E Deriving budget constraint (10)

Applying CVF from Corollary 2 on f (t, x, y) = yσx and the differentials (8) and (9) yields

da (t) =


wK(t)k(t)+wL(t)−pX(t)cX(t)−pY (t)cY (t)

pI(t)

³
B(t)
A(t)

´σ
+σ (ψB − ψA)

³
B(t)
A(t)

´σ
 dt

+

½·
B (t−)
A (t−)

+

µ
1

1 + γA
− 1
¶
B (t−)
A (t−)

¸σ
k (t−)−

µ
B (t)

A (t)

¶σ

k (t−)
¾
dqA (t)

+

½·
B (t−)
A (t−)

+ γB
B (t−)
A (t−)

¸σ
k (t−)−

µ
B (t)

A (t)

¶σ

k (t−)
¾
dqB (t) .

Using that pX/pY = B/A and rearranging leads to

da (t) =


wK(t)
pI(t)

a (t) + wL(t)−pX(t)cX(t)−pY (t)cY (t)
pI(t)

³
pX(t)
pY (t)

´σ
+σ (ψB − ψA) a (t)

 dt

+

·µ
1

1 + γA

¶σ

− 1
¸
a (t−) dqA (t) + [(1 + γB)

σ − 1] a (t−) dqB (t) .

Finally, by applying pI = pσXp
1−σ
Y and recollecting terms, we obtain

da (t) =

½·
wK (t)

pI (t)
+ σ (ψB − ψA)

¸
a (t) +

wL (t)

pY (t)
−
·
pX (t)

pY (t)
cX (t) + cY (t)

¸¾
dt

+

·µ
1

1 + γA

¶σ

− 1
¸
a (t−) dqA (t) + [(1 + γB)

σ − 1] a (t−) dqB (t) ,
21The budget constraint is derived by inserting bκ from (54) into the original budget constraint (17),

recollecting terms, and then using CVF on a (t) 7→ A (t).
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which is (10).

F Heuristic derivation of HJB equation (13)

Assuming that an optimal consumption process exists, we derive from

0 = max
c(s)≥0

Et

Z ∞

t

e−ρ(s−t)u (c (s)) ds− V (t, a (t))

for some small h > 0

0 = max
c(s)≥0

 Et

R t+h
t

e−ρ(s−t)u (c (s)) ds

+Et

h
e−ρhEt+h

R∞
t+h

e−ρ(s−(t+h))u (c (s)) ds
i − V (a (t)).

The expression Et+h

R∞
t+h

e−ρ(s−(t+h))u (c (s)) ds is nothing else than the expected lifetime

utility for a household starting with wealth a (t+ h) at time t+h. Therefore, for any control

c (s) with s ≥ t+ h,

Et+h

Z ∞

t+h

e−ρ[s−(t+h)]u (c (s)) ≤ V (t+ h, a (t+ h)) ,

where equality holds for the optimal consumption process c∗ (s). Hence,

0 = max
c(s)≥0,t≤s<t+h

½
Et

Z t+h

t

e−ρ(s−t)u (c (s)) ds+Et

£
e−ρhV (t+ h, a (t+ h))

¤¾− V (a (t)).

That means, assumed optimal behavior from time t + h on, the optimal consumption has

only to be determined until t+ h and not on the whole infinite time horizon. Dividing by h

and applying the limit h& 0, the last equation becomes

0 = max
c(t)

½
lim
h&0

Et
1

h

Z t+h

t

e−ρ(s−t)u (c (s)) ds+ lim
h&0

Et
1

h

£
e−ρhV (a (t+ h))− V (a (t))

¤¾
.

(57)

The second expression on the right-hand side is the derivation of e−ρhEV (a (t+ h)) with

respect to h for h = 0. Hence, using the product rule, this derivation becomes

−ρV (t, a (t)) + d

dh
EtV (t+ h, a (t+ h)) .

Since d
dh
EV (t+ h, a (t+ h)) in h = 0 is equal to d

dt
EV (t, a (t)) and today’s wealth is inde-

pendent on today’s consumption choice, we may rewrite (57) as

ρV (t, a (t)) = max
c(t)

½
lim
h&0

Et
1

h

Z t+h

t

e−ρ(s−t)u (c (s)) ds+
d

dt
EtV (t, a (t))

¾
.
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Under certain conditions the theorem of bounded convergence allows to interchange limit and

expectation (and thus differentiation and expectation). Then the latter equation becomes

ρV (t, a (t)) = max
c(t)

½
u (c (t)) +

EtdV (t, a (t))

dt

¾
,

which is the general HJB equation (13).

G Deriving budget constraint (17): The self-financing

approach

Another approach to derive the budget constraint is the concept of a self-financing portfolio,

taken from finance. Here the change of a portfolio value is only due to stock price changes.

In our example this means that, if dividend payments are not taken into account, the only

source for a change in the household’s wealth are price changes of the stocks held by the

household, labor income and consumption expenditure. We can thus describe the evolvement

of wealth by

da (t) = n1 (t−) dp1 (t) + n2 (t−) dp2 (t) + (w − c (t)) dt,

where n1 (t) and n2 (t) denote the number of stocks held in the risky and the safe asset,

respectively. Then, inserting the differentials (15) and (16) for the asset prices and observing

that b (t) = n1 (t) v1 (t) yields

da (t) = [r1n1 (t) v1 (t) + r2n2 (t) v2 (t) + w − c (t)] dt+ βn1 (t−) v1 (t−) dq (t)

= {r1b (t) + r2 [a (t)− b (t)] + w − c (t)} dt+ βb (t−) dq (t) ,

which gives already budget constraint (17).
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H Verification theorem: Deriving (40), (42) and (43)

Inserting the candidates for the value function and the optimal consumption and investment

behavior, (34), (38), and (39), respectively, into the maximized HJB equation in (35) yields

ρ
Γ1 [a+ Γ2]

1−σ − Γ3
1− σ

=
Γ
−(1−σ)/σ
1 [a+ Γ2]

1−σ − 1
1− σ

+


1
β

·³
λβ

r2−r1

´1/σ
− 1
¸
(r1 − r2) (a+ Γ2)

+r2a+ w − Γ
−1/σ
1 [a+ Γ2]

Γ1 [a+ Γ2]
−σ

+λ

 Γ1

½
a+

·³
λβ

r2−r1

´1/σ−1¸(a+Γ2)+Γ2¾1−σ−Γ3
1−σ

−Γ1[a+Γ2]
1−σ−Γ3

1−σ


Rearranging gives

ρ
Γ1 [a+ Γ2]

1−σ

1− σ
=

Γ
−(1−σ)/σ
1 [a+ Γ2]

1−σ − 1
1− σ

− 1− ρΓ3
1− σ

+


µ³

λβ
r2−r1

´1/σ
− 1
¶

r1−r2
β

+r2
a+w/r2
a+Γ2

− Γ
−1/σ
1

Γ1 [a+ Γ2]
1−σ

+λ

Γ1
³

λβ
r2−r1

´(1−σ)/σ
(a+ Γ2)

1−σ

1− σ
− Γ1 [a+ Γ2]

1−σ

1− σ

 .
Since this equation must hold for all a > −w/r2, we conclude that Γ3 = 1/ρ. Hence, dividing
the whole equation by Γ1 [a+ Γ2]

1−σ and multiplying with 1− σ leads to

ρ = Γ
−1/σ
1 + (1− σ)

"Ãµ
λβ

r2 − r1

¶1/σ
− 1
!
r1 − r2

β
+ r2

a+ w/r2
a+ Γ2

− Γ
−1/σ
1

#

+λ

"µ
λβ

r2 − r1

¶(1−σ)/σ
− 1
#
.

Then, again from the fact that this must hold for all a > −w/r2, we obtain Γ2 = w/r2.

Further rearranging yields

ρ = σΓ
−1/σ
1 + (1− σ)

"
−λ

µ
λβ

r2 − r1

¶(1−σ)/σ
+

r2 − r1
β

+ r2

#
+ λ

"µ
λβ

r2 − r1

¶(1−σ)/σ
− 1
#
,

and thus,

Γ
−1/σ
1 =

1

σ

·
ρ+ λ− (1− σ)

µ
r2 − r1

β
+ r2

¶¸
− λ

µ
λβ

r2 − r1

¶(1−σ)/σ
.
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The expression on the right-hand side is equal as ψ in (41). Hence, Γ
−1/σ
1 = ψ, and the

explicit expressions for the candidates of the value function and optimal consumption and

investment in (40), (42) and (43) follow.
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